RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2015-18] B.A./B.Sc. FOURTH SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017

Date : 15/03/2017 Time : 11 am – 1 pm INDUSTRIAL CHEMISTRY (Honours) Paper : IV

Full Marks: 50

[Use a separate Answer Book for each group]

Group – A

Answer any two questions from Question nos. 1 to 3 :

Fresh Feed

100 lb moles N_2+H_2

0.2 lb moles Ar

1. a) The equation for the flow of water through a nozzle is as follows

$$q = C \sqrt{\frac{2g}{1 - \left(\frac{d_1}{d_2}\right)^4}} \left(A \sqrt{\frac{\Delta p}{\rho}}\right)$$

where q = volume flowing per unit time, c = dimensionless constant, g = local gravitational acceleration, d_1 = smaller nozzle diameter, d_2 = longer nozzle diameter, A = area of nozzle outlet, Δp = pressure drop across nozzle, ρ = density of fluid flowing

State whether this equation is dimensionally consistent. Show how you arrived at your conclusion.

CONDENSER

NH₃ Liquid

Bled Stream

(or Purge Stream)

When a small tube is dipped into a pool of liquid, surface tension causes a meniscus to form at b) the free surface, which is elevated or depressed depending on the contact angle at the liquidsolid-gas interface. Experiments indicate that the magnitude of this capillary effect, Δh , is a function of the tube diameter D, the liquid specific weight γ , and surface tension σ . Determine the number of independent π parameters that can be formed and obtain a set.

REACTOR

2.

Recycle Stream

x lb moles N₂+H₂

- The waste acid from a nitrating process contains 23% HNO3, 57% H2SO4 and 20% H2O by b) weight. This acid is to be concentrated to contain 27% HNO₃ and 60% H₂SO₄ by the addition of concentrated sulfuric acid containing 93% H₂SO₄ and concentrated nitric acid containing 90% HNO₃. Calculate the weights of waste and concentrated acids that must be combined to obtain 1000 lb of the desired mixture. [2.5]
- Propane is dehydrogenated to form propylene in a catalytic reactor : 3. $C_3H_8 \rightarrow C_3H_6 + H_2$

[2]

[3]

[2×5]

[2.5]

The process is to be designed for a 95% overall conversion of propane. The reactor products are separated into two streams : the first, which contains H_2 , C_3H_6 and 0.555% of the propane that leaves the reactor, is taken off as product; the second stream, which contains the balance of the unreacted propane and 50% of the propylene in the first stream, is recycled to the reactor. Calculate the composition of the product, the ratio (moles recycled)/ (mole fresh feed) and the single pass conversion.

- 4. Answer <u>any one</u> question :
 - a) Distinguish between (i) extraction and leaching; (ii) absorption and adsorption
 - b) i) What factors the mass transfer rate between two fluid phase depends?
 - ii) State and explain Fick's law of diffusion.
- 5. Answer **any one** question :
 - a) An ethanol water solution is in contact at 20°C with an organic liquid film thickness 0.4 mm in which water is insoluble. The concentration of ethanol at the interface is 6.8 wt% and at the other side of film it is 10.8 wt%. The densities are 0.9981 gm/cc and 0.9728 gm/cc respectively for 6.8 wt% and 10.8 wt%. Diffusivity of ethanol is 74×10^{-5} cm²/s. Calculate the steady state flux kgmol/m²s.
 - b) A spherical water drop evaporates in stagnant air. Derive an expression to calculate the time required to evaporate the water drop. Assume the evaporation takes place only due to diffusion.

Answer any one question from Question nos. 6 & 7 :

6.

Tube Dia D

A simplistic model of a physical phenomena is as follows :

A tube as shown in figure is heated from B to C and cooled from D to A. It is filled with a liquid. Temperatures at points A, B, C and D are T_A , T_B , $T_C \& T_D$. Note $T_A = T_B$ and $T_C = T_D$ Heights of the heating and cooling columns are L. Heater section tube wall temperature is T_0 . Cooler section tube wall temperature is T*. Liquid gets hot in BC section, its density decreases and gets cooled in DA section, where its density increases, the differences in densities causes a differential pressure, which drives a flow as shown by circulation arrows in figure. Assume average density in AD region tube ρ^* and in BC region to be ρ_0 . Assume tube diameter to be D total length of tube = 3L. Liquid used

in water. Assume $\rho_0 = 0.9776 \frac{g}{cc}$ $\rho^* = 0.9955 \frac{g}{cc}$. Liquid viscosity $\eta = 0.56$ cP. D = 4mm, L = 30

cm,
$$T_0 = 95^{\circ}$$
 C, $T^* = 15^{\circ}$ C, $k = 0.642 \frac{W}{mK}$ $C_p = 4.182 \frac{J}{gk}$ $T_B = 30^{\circ}$ C, $T_D = 70^{\circ}$ C.
Take ρ for Re calculation as $\frac{(\rho_0 + \rho^*)}{2}$.

[1×6]

[5]

[1×4]

[1×10]

[Note : $T_A = T_B = 30^{\circ}C$, $T_C = T_D = 70^{\circ}C$, $\eta = 0.56 \text{ cP}$, $k = 0.642 \frac{W}{mK}$, $C_p = 4.182 \frac{J}{gk}$, L = 30 cm, $D = 4mm, T_0 = 95^{\circ}C$

Other Correlations

Laminar Flow N_u = 1.86 $\left(R_e P_r \frac{D}{L}\right)^{\frac{1}{3}}$ Turbulent flow $N_u = .023 \text{ Re}^{0.8} P_r^{0.4}$

- Calculate the recirculation rate and average linear velocity. a)
- Calculate the water side heat transfer coefficient in BC portion and the amount of heat b) transferred (Rate)
- An oil is being cooled in a double pipe heat exchanger from 80°C to 40°C by cooling water entering 7. at 30°C and leaving at 45°C. Flow rate of oil is 2kg/S. Oil flows inside the central tube and cooling water flows in the annular region. Inner tube dia is 3 cm, outer tube dia is 5 cm. Neglect metal resistance and thickness properties are given in table below **Property** :

	SP.Heat	k (w/m K)	ρ (g/cc)	η
	(J/Gk)			(cP)
Oil	2.2	0.13	0.82	1.3
Water	4.2	0.6	0.98	0.6

For f use Blausius Relation $f = 0.079 \text{ Re}^{-\frac{1}{4}}$.

Other Correlations

Laminar Flow N_u = 1.86 $\left(R_e P_r \frac{D}{L}\right)^{\frac{1}{3}}$

Turbulent flow N_u = $\cdot 023~Re^{0\cdot8}~P_r^{0\cdot4}$

- Calculate length of the heat exchanger. a)
- Calculate oil side pressure Drop. b) Give values of all linear velocities, Reynolds, Prandtl, Nusselt No, Friction Factor.

<u>Group – B</u>

Answer any four questions from Question nos. 8 to 13 :

8.	a)	Give example of the following ; free radical polymer, step growth polymer, coordination	
		polymer, semi-synthetic polymer, commodity plastic, emulsion polymer.	[3]
	b)	What do you mean by functionality?	[2]
9.	a)	What do you mean by thermal initiator?	[1]
	b)	Name one thermal imitator.	[1]
	c)	Write down the steps related to a FRP.	[3]
10.	a)	Why emulsion polymerized product is not suitable for electrical insulation applications?	[1]
	b)	Give stress vs strain plot for rubber, plastic and fibres.	[2]
	c)	Why polystyrene shows high T _g than polybutadiene?	[1]
	d)	What is monomer unit of natural rubber?	[1]
11.	a)	Name a naturally occurring high molecular weight polymer obtained in latex stage.	[1]
	b)	Write down its structures. Which form is used for making golf balls?	[1.5]

[5]

[5]

[4×5]

[5]

[5]

	c) d)	Jot down the conditions necessary for a polymer to be called as a rubber. Write down the Tg of CR & NR.	[1·5] [1]
12.	a)	Fill in the blanks :	[2]
		The tensile strength of unfilled NR is MPa	
		The tensile strength of filled SBR is MPa	
	b)	Which rubber will you select any why for making the following products :	[2]
		i) Football bladder	
		ii) Hawaii chappal	
		iii) Low cost oil seal for static applications	
	c)	Choose the appropriate rubber used for the following applications :	[1]
		i) Roof top, car window seals (exposed to sunlight) \rightarrow NR, SBR, NBR, EPDM, IIR, CR	
		ii) Fire retardant or insulating rubber \rightarrow NR, SBR, NBR, EPDM, IIR, CR	
13.	a)	Write down the reasons :	[2]
		i) PE is plastic though its Tg is much below room temperature (-120° C)	
		ii) Silicon rubber has both high and low temperature of applications.	
	b)	Write down the names and structures of the three dienes used for making EPDM rubber.	[1.5]
	c)	What will be the Tg of the polymer made by random copolymerization of 30% ACN and 70%	
	-,	Butadiene have individual Tg of 95°C and -90 °C respectively. Can we use it as rubber at STP?	[1.5]

_____× _____